@group(0) @binding(0) var output: texture_storage_2d; @group(0) @binding(1) var world_state: WorldState; @group(0) @binding(2) var brickgrid: array>; @group(0) @binding(3) var brickmap_cache: array; @group(0) @binding(4) var shading_table: array; @group(0) @binding(5) var cpu_feedback: Feedback; @group(0) @binding(6) var camera: Camera; struct ShadingElement { albedo: u32, } struct Brickmap { bitmask: array, shading_table_offset: u32, lod_color: u32, } struct Camera { projection: mat4x4, view: mat4x4, pos: vec3, _pad: f32, }; struct WorldState { brickmap_cache_dims: vec3, _pad: u32, }; struct HitInfo { hit: bool, hit_pos: vec3, mask: vec3, }; struct AabbHitInfo { hit: bool, distance: f32, }; struct Feedback { max_count: u32, count: atomic, _pad1: u32, _pad2: u32, positions: array>, } // struct UnpackElement { // pos: vec3, // cache_idx: u32, // map: Brickmap, // } // struct Unpack { // max_count: u32, // count: u32, // maps: array // } // Utility function. Converts a position in 3d to a 1d index. fn to_1d_index(p: vec3, dims: vec3) -> u32 { return u32(p.x + p.y * dims.x + p.z * dims.x * dims.y); } fn get_shading_offset(p: vec3) -> u32 { // What brickmap are we in? let brickgrid_index = to_1d_index(p / 8, vec3(world_state.brickmap_cache_dims)); let brick_ptr = brickgrid[brickgrid_index]; let brickmap = &brickmap_cache[brick_ptr >> 8u]; let local_index = to_1d_index(p % 8, vec3(8)); let bitmask_index = local_index / 32u; var map_voxel_idx = 0u; for (var i: i32 = 0; i < i32(bitmask_index); i++) { map_voxel_idx += countOneBits((*brickmap).bitmask[i]); } let extracted_bits = extractBits((*brickmap).bitmask[bitmask_index], 0u, (local_index % 32u)); map_voxel_idx += countOneBits(extracted_bits); return (*brickmap).shading_table_offset + map_voxel_idx; } fn ray_intersect_aabb( ray_pos: vec3, ray_dir: vec3, min: vec3, max: vec3 ) -> AabbHitInfo { let ray_dir_inv = 1.0 / ray_dir; let t1 = (min - ray_pos) * ray_dir_inv; let t2 = (max - ray_pos) * ray_dir_inv; let t_min = min(t1, t2); let t_max = max(t1, t2); let tmin = max(max(t_min.x, 0.0), max(t_min.y, t_min.z)); let tmax = min(t_max.x, min(t_max.y, t_max.z)); return AabbHitInfo(tmax > tmin, tmin); } fn point_inside_aabb(p: vec3, min: vec3, max: vec3) -> bool { let clamped = clamp(p, min, max - vec3(1)); return clamped.x == p.x && clamped.y == p.y && clamped.z == p.z; } fn voxel_hit(brickmap_idx: u32, p: vec3) -> bool { let local_index = to_1d_index(p % 8, vec3(8)); let bitmask_segment = brickmap_cache[brickmap_idx].bitmask[local_index / 32u]; return (bitmask_segment >> (local_index % 32u) & 1u) != 0u; } fn brick_ray_cast( chunk_pos: vec3, brickmap_idx: u32, orig_ray_pos: vec3, ray_dir: vec3 ) -> HitInfo { var hit_info = HitInfo(false, vec3(0), vec3(false)); var ray_pos = orig_ray_pos * 8.0; let min = vec3(chunk_pos * 8); let max = min + vec3(8.0); let aabbHit = ray_intersect_aabb(ray_pos, ray_dir, min, max); var tmin = aabbHit.distance; if (aabbHit.hit) { // Accelerate ray if (tmin > 0.0) { ray_pos += ray_dir * (tmin + 0.0001); } tmin = max(0.0, tmin); // DDA setup let delta_dist = abs(length(ray_dir) / ray_dir); let ray_step = vec3(sign(ray_dir)); var map_pos = vec3(floor(ray_pos)); var side_dist = (sign(ray_dir) * (vec3(map_pos) - ray_pos) + (sign(ray_dir) * 0.5) + 0.5) * delta_dist; map_pos = map_pos % 8; let max_brick_depth = 8 + 8 + 8; for (var i: i32 = 0; i < max_brick_depth; i++) { if (!point_inside_aabb(map_pos, vec3(0), vec3(8))) { break; } if (voxel_hit(brickmap_idx, map_pos)){ hit_info.hit = true; hit_info.hit_pos = map_pos; break; } if (side_dist.x < side_dist.y) { if (side_dist.x < side_dist.z) { side_dist.x += delta_dist.x; map_pos.x += ray_step.x; hit_info.mask = vec3(true, false, false); } else { side_dist.z += delta_dist.z; map_pos.z += ray_step.z; hit_info.mask = vec3(false, false, true); } } else { if (side_dist.y < side_dist.z) { side_dist.y += delta_dist.y; map_pos.y += ray_step.y; hit_info.mask = vec3(false, true, false); } else { side_dist.z += delta_dist.z; map_pos.z += ray_step.z; hit_info.mask = vec3(false, false, true); } } } } return hit_info; } fn grid_cast_ray(orig_ray_pos: vec3, ray_dir: vec3) -> HitInfo { var hit_info = HitInfo(false, vec3(0), vec3(false)); let min = vec3(0.0); let max = min + vec3(world_state.brickmap_cache_dims); let aabbHit = ray_intersect_aabb(orig_ray_pos, ray_dir, min, max); var ray_pos = orig_ray_pos; var tmin = aabbHit.distance; if (aabbHit.hit) { // Accelerate ray if (tmin > 0.0) { ray_pos += ray_dir * (tmin + 0.0001); } tmin = max(0.0, tmin); // Convert ray_pos into chunk scale // ray_pos /= 8.0; // DDA setup let delta_dist = abs(length(ray_dir) / ray_dir); let ray_step = vec3(sign(ray_dir)); var map_pos = vec3(floor(ray_pos)); var side_dist = (sign(ray_dir) * (vec3(map_pos) - ray_pos) + (sign(ray_dir) * 0.5) + 0.5) * delta_dist; let dims = world_state.brickmap_cache_dims; let max_grid_depth = i32(dims.x + dims.y + dims.z); for (var i: i32 = 0; i < max_grid_depth; i++) { if (!point_inside_aabb(map_pos, vec3(0), vec3(world_state.brickmap_cache_dims))) { break; } let grid_idx = to_1d_index(map_pos, vec3(world_state.brickmap_cache_dims)); let brick_ptr = brickgrid[grid_idx]; // Ptr = 28 bits LOD colour / brickmap index + 4 bits load flags // Flags: // 0 = empty // 1 = unloaded // 2 = loading // 4 = loaded let flags = brick_ptr & 0xFu; if flags == 1u { // Add to the load queue if (atomicLoad(&cpu_feedback.count) < cpu_feedback.max_count) { if ((atomicOr(&brickgrid[grid_idx], 2u) & 0x2u) == 0u) { let index = atomicAdd(&cpu_feedback.count, 1u); if (index < cpu_feedback.max_count) { cpu_feedback.positions[index] = vec4(map_pos, 0); } else { atomicSub(&cpu_feedback.count, 1u); atomicXor(&brickgrid[grid_idx], 2u); } } } // Set hit info stuff? break; } else if flags == 4u { let brickmap_idx = brick_ptr >> 8u; let tmp_voxel_hit = brick_ray_cast(map_pos, brickmap_idx, orig_ray_pos, ray_dir); if (tmp_voxel_hit.hit == true){ hit_info.hit = tmp_voxel_hit.hit; hit_info.hit_pos = tmp_voxel_hit.hit_pos + (map_pos * 8); hit_info.mask = tmp_voxel_hit.mask; break; } } if (side_dist.x < side_dist.y) { if (side_dist.x < side_dist.z) { side_dist.x += delta_dist.x; map_pos.x += ray_step.x; hit_info.mask = vec3(true, false, false); } else { side_dist.z += delta_dist.z; map_pos.z += ray_step.z; hit_info.mask = vec3(false, false, true); } } else { if (side_dist.y < side_dist.z) { side_dist.y += delta_dist.y; map_pos.y += ray_step.y; hit_info.mask = vec3(false, true, false); } else { side_dist.z += delta_dist.z; map_pos.z += ray_step.z; hit_info.mask = vec3(false, false, true); } } } } return hit_info; } @compute @workgroup_size(8, 8, 1) fn compute(@builtin(global_invocation_id) global_id: vec3) { let img_coord = vec2(global_id.xy); let img_dims = textureDimensions(output); // This discards the extra pixels in cases where the image size isn't perfectly divisible by the kernel.xy if (img_coord.x >= img_dims.x || img_coord.y >= img_dims.y) { return; } // Construct ray let img_coord_frac = vec2(img_coord) / vec2(img_dims); let screen_pos = img_coord_frac * 2.0 - vec2(1.0); var ray_eye = camera.projection * vec4(screen_pos, -1.0, 0.0); ray_eye = vec4(ray_eye.xy, -1.0, 0.0); let ray_dir = normalize((camera.view * ray_eye).xyz); let ray_pos = camera.pos; // Cast the ray var hit_info = grid_cast_ray(ray_pos, ray_dir); var color = vec4(0.0, 0.0, 0.0, 1.0); if (hit_info.hit){ // if (hit_info.mask.x) { // color.x = 1.0; // } // else if (hit_info.mask.y) { // color.y = 1.0; // } // else if (hit_info.mask.z) { // color.z = 1.0; // } // else { // color = vec4(1.0); // } let offset = get_shading_offset(hit_info.hit_pos); let raw_color = shading_table[offset].albedo; color.x = f32((raw_color >> 24u) & 255u) / 255.0; color.y = f32((raw_color >> 16u) & 255u) / 255.0; color.z = f32((raw_color >> 8u) & 255u) / 255.0; color.w = f32(raw_color & 255u) / 255.0; } textureStore(output, img_coord, color); }