voxel-rs/assets/shaders/voxel_volume.wgsl

148 lines
4.8 KiB
WebGPU Shading Language

@group(0) @binding(0) var output: texture_storage_2d<rgba8unorm, write>;
@group(1) @binding(0) var voxels_t: texture_3d<f32>;
@group(1) @binding(1) var voxels_s: sampler;
// @group(2) @binding(0) var<uniform> camera: Camera;
// struct Camera {
// projection: mat4x4<f32>,
// view: mat4x4<f32>,
// pos: vec3<f32>,
// };
struct HitInfo {
hit: bool,
hit_pos: vec3<i32>,
mask: vec3<bool>,
};
struct AabbHitInfo {
hit: bool,
distance: f32,
};
fn ray_intersect_aabb(ray_pos: vec3<f32>, ray_dir: vec3<f32>) -> AabbHitInfo {
let ray_dir_inv = 1.0 / ray_dir;
let t1 = (vec3<f32>(0.0) - ray_pos) * ray_dir_inv;
let t2 = (vec3<f32>(textureDimensions(voxels_t)) - ray_pos) * ray_dir_inv;
let t_min = min(t1, t2);
let t_max = max(t1, t2);
let tmin = max(max(t_min.x, 0.0), max(t_min.y, t_min.z));
let tmax = min(t_max.x, min(t_max.y, t_max.z));
return AabbHitInfo(tmax > tmin, tmin);
}
fn point_inside_aabb(p: vec3<i32>) -> bool {
let clamped = clamp(p, vec3<i32>(0), textureDimensions(voxels_t) - vec3<i32>(1));
return clamped.x == p.x && clamped.y == p.y && clamped.z == p.z;
}
fn voxel_hit(p: vec3<i32>) -> bool {
let v = textureLoad(voxels_t, p, 0);
return length(v) != 0.0;
}
fn cast_ray(orig_ray_pos: vec3<f32>, ray_dir: vec3<f32>) -> HitInfo {
var hit_info = HitInfo(false, vec3<i32>(0), vec3<bool>(false));
let aabbHit = ray_intersect_aabb(orig_ray_pos, ray_dir);
var ray_pos = orig_ray_pos;
var tmin = aabbHit.distance;
if (aabbHit.hit) {
// Accelerate ray
if (tmin > 0.0) {
ray_pos += ray_dir * (tmin - 0.0001);
}
tmin = max(0.0, tmin);
// DDA setup
let delta_dist = abs(length(ray_dir) / ray_dir);
let ray_step = vec3<i32>(sign(ray_dir));
var map_pos = vec3<i32>(floor(ray_pos));
var side_dist = (sign(ray_dir) * (vec3<f32>(map_pos) - ray_pos) + (sign(ray_dir) * 0.5) + 0.5) * delta_dist;
// TODO: don't hardcode max ray depth
for (var i: i32 = 0; i < 64; i++) {
if (side_dist.x < side_dist.y) {
if (side_dist.x < side_dist.z) {
side_dist.x += delta_dist.x;
map_pos.x += ray_step.x;
hit_info.mask = vec3<bool>(true, false, false);
}
else {
side_dist.z += delta_dist.z;
map_pos.z += ray_step.z;
hit_info.mask = vec3<bool>(false, false, true);
}
}
else {
if (side_dist.y < side_dist.z) {
side_dist.y += delta_dist.y;
map_pos.y += ray_step.y;
hit_info.mask = vec3<bool>(false, true, false);
}
else {
side_dist.z += delta_dist.z;
map_pos.z += ray_step.z;
hit_info.mask = vec3<bool>(false, false, true);
}
}
if (!point_inside_aabb(map_pos)) {
break;
}
if (voxel_hit(map_pos)) {
hit_info.hit = true;
hit_info.hit_pos = map_pos;
break;
}
}
}
return hit_info;
}
@compute @workgroup_size(8, 8, 1)
fn compute(@builtin(global_invocation_id) global_id: vec3<u32>) {
let img_coord = vec2<i32>(global_id.xy);
let img_dims = textureDimensions(output);
// This discards the extra pixels in cases where the image size isn't perfectly divisible by the kernel.xy
if (img_coord.x >= img_dims.x || img_coord.y >= img_dims.y) {
return;
}
// Construct ray
let img_coord_frac = vec2<f32>(img_coord) / vec2<f32>(img_dims);
let screen_pos = img_coord_frac * 2.0 - vec2<f32>(1.0);
// var ray_eye = camera.projection * vec4<f32>(screen_pos, -1.0, 0.0);
// ray_eye = vec4<f32>(ray_eye.xy, -1.0, 0.0);
// let ray_dir = normalize((camera.view * ray_eye).xyz);
// let ray_pos = camera.pos;
let camera_dir = vec3<f32>(0.01, 0.0, 0.8);
let camera_plane_u = vec3<f32>(1.0, 0.0, 0.0);
let camera_plane_v = vec3<f32>(0.0, 1.0, 0.0) * f32(img_dims.y) / f32(img_dims.x);
let ray_dir = camera_dir + screen_pos.x * camera_plane_u + screen_pos.y * camera_plane_v;
let ray_pos = vec3<f32>(-4.01, 5.0, -10.0);
// Cast the ray
var hit_info = cast_ray(ray_pos, ray_dir);
var color = vec4<f32>(0.0, 0.0, 0.0, 1.0);
if (hit_info.hit){
// if (hit_info.mask.x) {
// color.x = 1.0;
// }
// else if (hit_info.mask.y) {
// color.y = 1.0;
// }
// else if (hit_info.mask.z) {
// color.z = 1.0;
// }
// else {
// color = vec4<f32>(1.0);
// }
color = textureLoad(voxels_t, hit_info.hit_pos, 0);
}
textureStore(output, img_coord, color);
}