voxel-rs/assets/shaders/voxel_volume.wgsl

340 lines
12 KiB
WebGPU Shading Language

@group(0) @binding(0) var output: texture_storage_2d<rgba8unorm, write>;
@group(0) @binding(1) var<uniform> world_state: WorldState;
@group(0) @binding(2) var<storage, read_write> brickgrid: array<atomic<u32>>;
@group(0) @binding(3) var<storage, read> brickmap_cache: array<Brickmap>;
@group(0) @binding(4) var<storage, read> shading_table: array<ShadingElement>;
@group(0) @binding(5) var<storage, read_write> cpu_feedback: Feedback;
@group(0) @binding(6) var<uniform> camera: Camera;
struct ShadingElement {
albedo: u32,
}
struct Brickmap {
bitmask: array<u32, 16>,
shading_table_offset: u32,
lod_color: u32,
}
struct Camera {
projection: mat4x4<f32>,
view: mat4x4<f32>,
pos: vec3<f32>,
_pad: f32,
};
// TODO: Should probably know how big the cache and shading table are etc.
struct WorldState {
brickgrid_dims: vec3<u32>,
_pad: u32,
};
struct HitInfo {
hit: bool,
hit_pos: vec3<i32>,
brickmap_idx: u32,
mask: vec3<bool>,
};
struct AabbHitInfo {
hit: bool,
distance: f32,
normal: vec3<f32>,
};
struct Feedback {
max_count: u32,
count: atomic<u32>,
_pad1: u32,
_pad2: u32,
positions: array<vec4<i32>>,
}
struct DdaState {
delta_dist: vec3<f32>,
ray_step: vec3<i32>,
map_pos: vec3<i32>,
side_dist: vec3<f32>,
side_mask: vec3<bool>,
}
fn dda_setup(ray_pos: vec3<f32>, ray_dir: vec3<f32>) -> DdaState {
let delta_dist = abs(length(ray_dir) / ray_dir);
let ray_step = vec3<i32>(sign(ray_dir));
let map_pos = vec3<i32>(floor(ray_pos));
let side_dist = (sign(ray_dir) * (vec3<f32>(map_pos) - ray_pos) + (sign(ray_dir) * 0.5) + 0.5) * delta_dist;
return DdaState(delta_dist, ray_step, map_pos, side_dist, vec3<bool>(false, false, false));
}
fn dda_step(state: ptr<function, DdaState>) {
// Update hit side mask
let side_dist = (*state).side_dist;
let smallest = min(side_dist.x, min(side_dist.y, side_dist.z));
if (smallest == side_dist.x) {
(*state).side_mask = vec3<bool>(true, false, false);
}
else if (smallest == side_dist.y) {
(*state).side_mask = vec3<bool>(false, true, false);
}
else {
(*state).side_mask = vec3<bool>(false, false, true);
}
// Step the ray based on which voxel side we're on
(*state).side_dist += vec3<f32>((*state).side_mask) * (*state).delta_dist;
(*state).map_pos += vec3<i32>((*state).side_mask) * (*state).ray_step;
}
// Utility function. Converts a position in 3d to a 1d index.
fn to_1d_index(p: vec3<i32>, dims: vec3<i32>) -> u32 {
return u32(p.x + p.y * dims.x + p.z * dims.x * dims.y);
}
fn get_shading_offset(hit: HitInfo) -> u32 {
let brickmap = &brickmap_cache[hit.brickmap_idx];
let local_index = to_1d_index(hit.hit_pos % 8, vec3<i32>(8));
let bitmask_index = local_index / 32u;
var map_voxel_idx = 0u;
for (var i: i32 = 0; i < i32(bitmask_index); i++) {
map_voxel_idx += countOneBits((*brickmap).bitmask[i]);
}
let extracted_bits = extractBits((*brickmap).bitmask[bitmask_index], 0u, (local_index % 32u));
map_voxel_idx += countOneBits(extracted_bits);
return (*brickmap).shading_table_offset + map_voxel_idx;
}
fn max_component(v: vec3<f32>) -> f32 {
return max(max(v.x, v.y), v.z);
}
fn less_than(a: vec2<f32>, b: vec2<f32>) -> vec2<bool> {
return vec2<bool>(a.x < b.x, a.y < b.y);
}
fn ray_intersect_aabb(
orig_ray_pos: vec3<f32>,
ray_dir: vec3<f32>,
min: vec3<f32>,
max: vec3<f32>
) -> AabbHitInfo {
let radius = (max - min) * 0.5;
let center = min + radius;
let ray_pos = orig_ray_pos - center;
var winding = 1.0;
if (max_component(abs(ray_pos) * (1.0 / radius)) < 1.0) {
winding = -1.0;
}
var sgn = -sign(ray_dir);
let d = (radius * winding * sgn - ray_pos) * (1.0 / ray_dir);
let test = vec3<bool>(
(d.x >= 0.0) && all(less_than(abs(ray_pos.yz + ray_dir.yz * d.x), radius.yz)),
(d.y >= 0.0) && all(less_than(abs(ray_pos.zx + ray_dir.zx * d.y), radius.zx)),
(d.z >= 0.0) && all(less_than(abs(ray_pos.xy + ray_dir.xy * d.z), radius.xy))
);
if (test.x) {
sgn = vec3<f32>(sgn.x, 0.0, 0.0);
} else if (test.y) {
sgn = vec3<f32>(0.0, sgn.y, 0.0);
} else if (test.z) {
sgn = vec3<f32>(0.0, 0.0, sgn.z);
} else {
sgn = vec3<f32>(0.0, 0.0, 0.0);
}
var distance = 0.0;
if (sgn.x != 0.0) {
distance = d.x;
} else if (sgn.y != 0.0) {
distance = d.y;
} else if (sgn.z != 0.0) {
distance = d.z;
}
return AabbHitInfo((sgn.x != 0.0) || (sgn.y != 0.0) || (sgn.z != 0.0), distance * winding, sgn);
}
fn point_inside_aabb(p: vec3<i32>, min: vec3<i32>, max: vec3<i32>) -> bool {
let clamped = clamp(p, min, max - vec3<i32>(1));
return clamped.x == p.x && clamped.y == p.y && clamped.z == p.z;
}
fn voxel_hit(brickmap_idx: u32, p: vec3<i32>) -> bool {
// Convert the global position into an index within the brickmap
let local_index = to_1d_index(p % 8, vec3<i32>(8));
// Is the bit at local_index within the bitmask a 1?
let bitmask_segment = brickmap_cache[brickmap_idx].bitmask[local_index / 32u];
return (bitmask_segment >> (local_index % 32u) & 1u) != 0u;
}
fn brick_ray_cast(
chunk_pos: vec3<i32>,
brickmap_idx: u32,
orig_ray_pos: vec3<f32>,
ray_dir: vec3<f32>
) -> HitInfo {
var hit_info = HitInfo(false, vec3<i32>(0), 0u, vec3<bool>(false));
var ray_pos = orig_ray_pos * 8.0;
let min = vec3<f32>(chunk_pos * 8);
let max = min + vec3<f32>(8.0);
let aabbHit = ray_intersect_aabb(ray_pos, ray_dir, min, max);
if (aabbHit.hit) {
// distance is greater than 0 if the ray is outside of the AABB, so we need to
// accelerate the ray to be on the edge of the AABB.
if (aabbHit.distance > 0.0) {
ray_pos += ray_dir * aabbHit.distance - aabbHit.normal * 0.0001;
}
var dda_state = dda_setup(ray_pos, ray_dir);
dda_state.map_pos = dda_state.map_pos % 8;
let max_brick_depth = 8 + 8 + 8;
for (var i: i32 = 0; i < max_brick_depth; i++) {
if (!point_inside_aabb(dda_state.map_pos, vec3<i32>(0), vec3<i32>(8))) {
// If the ray has left the brickmap AABB there's no point in continuing
// to trace against it
break;
}
if (voxel_hit(brickmap_idx, dda_state.map_pos)){
hit_info.hit = true;
hit_info.hit_pos = dda_state.map_pos;
hit_info.brickmap_idx = brickmap_idx;
break;
}
dda_step(&dda_state);
hit_info.mask = dda_state.side_mask;
}
}
return hit_info;
}
fn grid_cast_ray(orig_ray_pos: vec3<f32>, ray_dir: vec3<f32>) -> HitInfo {
var hit_info = HitInfo(false, vec3<i32>(0), 0u, vec3<bool>(false));
let min = vec3<f32>(0.0);
let max = min + vec3<f32>(world_state.brickgrid_dims);
let aabbHit = ray_intersect_aabb(orig_ray_pos, ray_dir, min, max);
var ray_pos = orig_ray_pos;
if (aabbHit.hit) {
// distance is greater than 0 if the ray is outside of the AABB, so we need to
// accelerate the ray to be on the edge of the AABB.
if (aabbHit.distance > 0.0) {
ray_pos += ray_dir * aabbHit.distance - aabbHit.normal * 0.0001;
}
var dda_state = dda_setup(ray_pos, ray_dir);
let dims = world_state.brickgrid_dims;
let max_grid_depth = i32(dims.x + dims.y + dims.z);
for (var i: i32 = 0; i < max_grid_depth; i++) {
if (!point_inside_aabb(dda_state.map_pos, vec3<i32>(0), vec3<i32>(world_state.brickgrid_dims))) {
// If the ray has left the brickmap AABB there's no point in continuing
// to trace against it
break;
}
let grid_idx = to_1d_index(dda_state.map_pos, vec3<i32>(world_state.brickgrid_dims));
let brick_ptr = brickgrid[grid_idx];
// Ptr = 28 bits LOD colour / brickmap index + 4 bits load flags
// Flags:
// 0 = empty
// 1 = unloaded
// 2 = loading
// 4 = loaded
let flags = brick_ptr & 0xFu;
if flags == 1u {
// The brickmap we're in is currently unloaded so we'll try and add it
// to the load queue. Heavy atomic use here because multiple shader
// dispatches might be trying to add the same brickmap
if (atomicLoad(&cpu_feedback.count) < cpu_feedback.max_count) {
// This is checking that in the time since the flags were calculated
// another dispatch hasn't already started loading the brickmap
if ((atomicOr(&brickgrid[grid_idx], 2u) & 0x2u) == 0u) {
// If there's still space in the queue at this point, add the
// brickmap. Otherwise, revert any changes made
let index = atomicAdd(&cpu_feedback.count, 1u);
if (index < cpu_feedback.max_count) {
cpu_feedback.positions[index] = vec4<i32>(dda_state.map_pos, 0);
}
else {
atomicSub(&cpu_feedback.count, 1u);
atomicXor(&brickgrid[grid_idx], 2u);
}
}
}
// TODO: Set hit info stuff?
break;
}
else if flags == 4u {
// The brickmap is loaded so we try and cast against it
let brickmap_idx = brick_ptr >> 8u;
let tmp_voxel_hit = brick_ray_cast(dda_state.map_pos, brickmap_idx, orig_ray_pos, ray_dir);
// If we hit a voxel in the brickmap, update hitinfo and stop casting
if (tmp_voxel_hit.hit == true){
hit_info.hit = tmp_voxel_hit.hit;
hit_info.hit_pos = tmp_voxel_hit.hit_pos + (dda_state.map_pos * 8);
hit_info.mask = tmp_voxel_hit.mask;
hit_info.brickmap_idx = tmp_voxel_hit.brickmap_idx;
break;
}
}
dda_step(&dda_state);
hit_info.mask = dda_state.side_mask;
}
}
return hit_info;
}
@compute @workgroup_size(8, 8, 1)
fn compute(@builtin(global_invocation_id) global_id: vec3<u32>) {
let img_coord = vec2<i32>(global_id.xy);
let img_dims = textureDimensions(output);
// This discards the extra pixels in cases where the image size isn't perfectly divisible by the kernel.xy
if (img_coord.x >= img_dims.x || img_coord.y >= img_dims.y) {
return;
}
// Construct ray
let img_coord_frac = vec2<f32>(img_coord) / vec2<f32>(img_dims);
let screen_pos = img_coord_frac * 2.0 - vec2<f32>(1.0);
var ray_eye = camera.projection * vec4<f32>(screen_pos, -1.0, 0.0);
ray_eye = vec4<f32>(ray_eye.xy, -1.0, 0.0);
let ray_dir = normalize((camera.view * ray_eye).xyz);
let ray_pos = camera.pos;
// Cast the ray
var hit_info = grid_cast_ray(ray_pos, ray_dir);
var color = vec4<f32>(0.0, 0.0, 0.0, 1.0);
if (hit_info.hit){
// if (hit_info.mask.x) {
// color.x = 1.0;
// }
// else if (hit_info.mask.y) {
// color.y = 1.0;
// }
// else if (hit_info.mask.z) {
// color.z = 1.0;
// }
// else {
// color = vec4<f32>(1.0);
// }
let offset = get_shading_offset(hit_info);
let raw_color = shading_table[offset].albedo;
color.x = f32((raw_color >> 24u) & 255u) / 255.0;
color.y = f32((raw_color >> 16u) & 255u) / 255.0;
color.z = f32((raw_color >> 8u) & 255u) / 255.0;
color.w = f32(raw_color & 255u) / 255.0;
}
textureStore(output, img_coord, color);
}