458 lines
17 KiB
Rust
458 lines
17 KiB
Rust
use wgpu::util::DeviceExt;
|
|
|
|
use crate::render;
|
|
|
|
#[repr(C)]
|
|
#[derive(Debug, Default, Copy, Clone, bytemuck::Pod, bytemuck::Zeroable)]
|
|
struct Brickmap {
|
|
pub bitmask: [u32; 16],
|
|
pub shading_table_offset: u32,
|
|
pub lod_color: u32,
|
|
}
|
|
|
|
#[repr(C)]
|
|
#[derive(Debug, Default, Copy, Clone, bytemuck::Pod, bytemuck::Zeroable)]
|
|
struct WorldState {
|
|
brickgrid_dims: [u32; 3],
|
|
_pad: u32,
|
|
}
|
|
|
|
#[derive(Debug, Default, Copy, Clone)]
|
|
struct BrickmapCacheEntry {
|
|
grid_idx: usize,
|
|
shading_table_offset: u32,
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
pub struct BrickmapManager {
|
|
state_uniform: WorldState,
|
|
state_buffer: wgpu::Buffer,
|
|
brickgrid: Vec<u32>,
|
|
brickgrid_buffer: wgpu::Buffer,
|
|
brickmap_cache_map: Vec<Option<BrickmapCacheEntry>>,
|
|
brickmap_cache_idx: usize,
|
|
brickmap_buffer: wgpu::Buffer,
|
|
shading_table_buffer: wgpu::Buffer,
|
|
shading_table_allocator: ShadingTableAllocator,
|
|
feedback_buffer: wgpu::Buffer,
|
|
feedback_result_buffer: wgpu::Buffer,
|
|
}
|
|
|
|
// TODO:
|
|
// - GPU side unpack buffer rather than uploading each changed brickmap part
|
|
// - Brickworld system
|
|
impl BrickmapManager {
|
|
pub fn new(context: &render::Context, brickgrid_dims: glam::UVec3) -> Self {
|
|
let device = &context.device;
|
|
|
|
let state_uniform = WorldState {
|
|
brickgrid_dims: [brickgrid_dims.x, brickgrid_dims.y, brickgrid_dims.z],
|
|
..Default::default()
|
|
};
|
|
let state_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
|
|
label: None,
|
|
contents: bytemuck::cast_slice(&[state_uniform]),
|
|
usage: wgpu::BufferUsages::UNIFORM,
|
|
});
|
|
|
|
let brickgrid =
|
|
vec![1u32; (brickgrid_dims.x * brickgrid_dims.y * brickgrid_dims.z) as usize];
|
|
let brickgrid_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
|
|
label: None,
|
|
contents: bytemuck::cast_slice(&brickgrid),
|
|
usage: wgpu::BufferUsages::STORAGE | wgpu::BufferUsages::COPY_DST,
|
|
});
|
|
|
|
let brickmap_cache = vec![Brickmap::default(); usize::pow(32, 3)];
|
|
let brickmap_cache_map = vec![None; brickmap_cache.capacity()];
|
|
let brickmap_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
|
|
label: None,
|
|
contents: bytemuck::cast_slice(&brickmap_cache),
|
|
usage: wgpu::BufferUsages::STORAGE | wgpu::BufferUsages::COPY_DST,
|
|
});
|
|
|
|
let shading_table_allocator = ShadingTableAllocator::new(4, u32::pow(2, 24));
|
|
let shading_table = vec![0u32; shading_table_allocator.total_elements as usize];
|
|
let shading_table_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
|
|
label: None,
|
|
contents: bytemuck::cast_slice(&shading_table),
|
|
usage: wgpu::BufferUsages::STORAGE | wgpu::BufferUsages::COPY_DST,
|
|
});
|
|
|
|
let mut arr = [0u32; 1028];
|
|
arr[0] = 256;
|
|
let feedback_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
|
|
label: None,
|
|
contents: bytemuck::cast_slice(&arr),
|
|
usage: wgpu::BufferUsages::STORAGE
|
|
| wgpu::BufferUsages::COPY_DST
|
|
| wgpu::BufferUsages::COPY_SRC,
|
|
});
|
|
let feedback_result_buffer = device.create_buffer(&wgpu::BufferDescriptor {
|
|
label: None,
|
|
size: 1028 * 4,
|
|
usage: wgpu::BufferUsages::COPY_DST | wgpu::BufferUsages::MAP_READ,
|
|
mapped_at_creation: false,
|
|
});
|
|
|
|
Self {
|
|
state_uniform,
|
|
state_buffer,
|
|
brickgrid,
|
|
brickgrid_buffer,
|
|
brickmap_cache_map,
|
|
brickmap_cache_idx: 0,
|
|
brickmap_buffer,
|
|
shading_table_buffer,
|
|
shading_table_allocator,
|
|
feedback_buffer,
|
|
feedback_result_buffer,
|
|
}
|
|
}
|
|
|
|
pub fn get_brickgrid_buffer(&self) -> &wgpu::Buffer {
|
|
&self.brickgrid_buffer
|
|
}
|
|
|
|
pub fn get_worldstate_buffer(&self) -> &wgpu::Buffer {
|
|
&self.state_buffer
|
|
}
|
|
|
|
pub fn get_brickmap_buffer(&self) -> &wgpu::Buffer {
|
|
&self.brickmap_buffer
|
|
}
|
|
|
|
pub fn get_shading_buffer(&self) -> &wgpu::Buffer {
|
|
&self.shading_table_buffer
|
|
}
|
|
|
|
pub fn get_feedback_buffer(&self) -> &wgpu::Buffer {
|
|
&self.feedback_buffer
|
|
}
|
|
|
|
pub fn get_feedback_result_buffer(&self) -> &wgpu::Buffer {
|
|
&self.feedback_result_buffer
|
|
}
|
|
|
|
pub fn process_feedback_buffer(
|
|
&mut self,
|
|
context: &render::Context,
|
|
world: &mut super::world::WorldManager,
|
|
) {
|
|
// Get request count
|
|
let mut slice = self.feedback_result_buffer.slice(0..16);
|
|
slice.map_async(wgpu::MapMode::Read, |_| {});
|
|
context.device.poll(wgpu::Maintain::Wait);
|
|
let mut data: Vec<u32> = bytemuck::cast_slice(slice.get_mapped_range().as_ref()).to_vec();
|
|
self.feedback_result_buffer.unmap();
|
|
|
|
let request_count = data[1] as usize;
|
|
if request_count == 0 {
|
|
return;
|
|
}
|
|
|
|
// Get the position data
|
|
slice = self.feedback_result_buffer.slice(16..);
|
|
slice.map_async(wgpu::MapMode::Read, |_| {});
|
|
context.device.poll(wgpu::Maintain::Wait);
|
|
data = bytemuck::cast_slice(slice.get_mapped_range().as_ref()).to_vec();
|
|
self.feedback_result_buffer.unmap();
|
|
|
|
// Generate a sphere of voxels
|
|
let world_dims = self.state_uniform.brickgrid_dims;
|
|
for i in 0..request_count {
|
|
let chunk_x = data[i * 4];
|
|
let chunk_y = data[i * 4 + 1];
|
|
let chunk_z = data[i * 4 + 2];
|
|
|
|
let chunk_dims = world.get_chunk_dims();
|
|
let global_block_pos = glam::uvec3(chunk_x, chunk_y, chunk_z);
|
|
let chunk_pos = glam::ivec3(
|
|
(global_block_pos.x / chunk_dims.x) as i32,
|
|
(global_block_pos.y / chunk_dims.y) as i32,
|
|
(global_block_pos.z / chunk_dims.z) as i32,
|
|
);
|
|
let block_pos = global_block_pos % chunk_dims;
|
|
let block = world.get_block(chunk_pos, block_pos);
|
|
assert_eq!(block.len(), 512);
|
|
|
|
// Cull interior voxels
|
|
let mut bitmask_data = [0xFFFFFFFF_u32; 16];
|
|
let mut albedo_data = Vec::<u32>::new();
|
|
for z in 0..8 {
|
|
// Each z level contains two bitmask segments of voxels
|
|
let mut entry = 0u64;
|
|
for y in 0..8 {
|
|
for x in 0..8 {
|
|
// Ignore non-solids
|
|
let idx = x + y * 8 + z * 8 * 8;
|
|
let empty_voxel = super::world::Voxel::Empty;
|
|
|
|
match block[idx] {
|
|
super::world::Voxel::Empty => continue,
|
|
super::world::Voxel::Color(r, g, b) => {
|
|
// A voxel is on the surface if at least one of it's
|
|
// cardinal neighbours is non-solid. Also for simplicity
|
|
// if it's on the edge of the chunk
|
|
// TODO: Account for neighbours in other blocks
|
|
let surface_voxel =
|
|
if x == 0 || x == 7 || y == 0 || y == 7 || z == 0 || z == 7 {
|
|
true
|
|
} else {
|
|
!(block[idx + 1] == empty_voxel
|
|
&& block[idx - 1] == empty_voxel
|
|
&& block[idx + 8] == empty_voxel
|
|
&& block[idx - 8] == empty_voxel
|
|
&& block[idx + 64] == empty_voxel
|
|
&& block[idx - 64] == empty_voxel)
|
|
};
|
|
|
|
// Set the appropriate bit in the z entry and add the
|
|
// shading data
|
|
if surface_voxel {
|
|
entry += 1 << (x + y * 8);
|
|
let albedo = ((r as u32) << 24)
|
|
+ ((g as u32) << 16)
|
|
+ ((b as u32) << 8)
|
|
+ 255u32;
|
|
albedo_data.push(albedo);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
let offset = 2 * z;
|
|
bitmask_data[offset] = (entry & 0xFFFFFFFF).try_into().unwrap();
|
|
bitmask_data[offset + 1] = ((entry >> 32) & 0xFFFFFFFF).try_into().unwrap();
|
|
}
|
|
|
|
let chunk_idx = (chunk_x
|
|
+ chunk_y * world_dims[0]
|
|
+ chunk_z * world_dims[0] * world_dims[1]) as usize;
|
|
|
|
// Don't upload it if it's empty
|
|
if albedo_data.is_empty() {
|
|
self.update_brickgrid_element(context, chunk_idx, 0);
|
|
continue;
|
|
}
|
|
|
|
// Update the brickgrid index
|
|
let brickgrid_element = ((self.brickmap_cache_idx as u32) << 8) + 4;
|
|
self.update_brickgrid_element(context, chunk_idx, brickgrid_element);
|
|
|
|
// Update the shading table
|
|
let shading_idx = self
|
|
.shading_table_allocator
|
|
.try_alloc(albedo_data.len() as u32)
|
|
.unwrap() as usize;
|
|
context.queue.write_buffer(
|
|
&self.shading_table_buffer,
|
|
(shading_idx * 4) as u64,
|
|
bytemuck::cast_slice(&albedo_data),
|
|
);
|
|
|
|
// Update the brickmap
|
|
let brickmap = Brickmap {
|
|
bitmask: bitmask_data,
|
|
shading_table_offset: shading_idx as u32,
|
|
lod_color: 0,
|
|
};
|
|
|
|
// If there's already something in the cache spot we want to write to, we
|
|
// need to unload it.
|
|
if self.brickmap_cache_map[self.brickmap_cache_idx].is_some() {
|
|
let entry = self.brickmap_cache_map[self.brickmap_cache_idx].unwrap();
|
|
self.update_brickgrid_element(context, entry.grid_idx, 1);
|
|
}
|
|
|
|
// We're all good to overwrite the cache map entry now :)
|
|
self.brickmap_cache_map[self.brickmap_cache_idx] = Some(BrickmapCacheEntry {
|
|
grid_idx: chunk_idx,
|
|
shading_table_offset: shading_idx as u32,
|
|
});
|
|
|
|
context.queue.write_buffer(
|
|
&self.brickmap_buffer,
|
|
(72 * self.brickmap_cache_idx) as u64,
|
|
bytemuck::cast_slice(&[brickmap]),
|
|
);
|
|
self.brickmap_cache_idx = (self.brickmap_cache_idx + 1) % self.brickmap_cache_map.len();
|
|
}
|
|
|
|
// Reset the request count on the gpu buffer
|
|
let data = &[0, 0, 0, 0];
|
|
context.queue.write_buffer(&self.feedback_buffer, 4, data);
|
|
|
|
log::info!("Num loaded brickmaps: {}", self.brickmap_cache_idx);
|
|
}
|
|
|
|
fn update_brickgrid_element(&mut self, context: &render::Context, index: usize, data: u32) {
|
|
// If we're updating a brickgrid element, we need to make sure to deallocate anything
|
|
// that's already there. The shading table gets deallocated, and the brickmap cache entry
|
|
// is marked as None.
|
|
if (self.brickgrid[index] & 0xF) == 4 {
|
|
let brickmap_idx = (self.brickgrid[index] >> 8) as usize;
|
|
let cache_map_entry = self.brickmap_cache_map[brickmap_idx];
|
|
match cache_map_entry {
|
|
Some(entry) => {
|
|
match self
|
|
.shading_table_allocator
|
|
.try_dealloc(entry.shading_table_offset)
|
|
{
|
|
Ok(_) => (),
|
|
Err(e) => log::warn!("{}", e),
|
|
}
|
|
self.brickmap_cache_map[brickmap_idx] = None;
|
|
}
|
|
None => log::warn!("Expected brickmap cache entry, found None!"),
|
|
}
|
|
}
|
|
|
|
// We're safe to overwrite the CPU brickgrid and upload to gpu now
|
|
self.brickgrid[index] = data;
|
|
context.queue.write_buffer(
|
|
&self.brickgrid_buffer,
|
|
(index * 4).try_into().unwrap(),
|
|
bytemuck::cast_slice(&[data]),
|
|
);
|
|
}
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
struct ShadingBucket {
|
|
global_offset: u32,
|
|
slot_count: u32,
|
|
slot_size: u32,
|
|
free: Vec<u32>,
|
|
used: Vec<u32>,
|
|
}
|
|
|
|
impl ShadingBucket {
|
|
fn new(global_offset: u32, slot_count: u32, slot_size: u32) -> Self {
|
|
let mut free = Vec::with_capacity(slot_count as usize);
|
|
for i in (0..slot_count).rev() {
|
|
free.push(i);
|
|
}
|
|
|
|
let used = Vec::with_capacity(slot_count as usize);
|
|
Self {
|
|
global_offset,
|
|
slot_count,
|
|
slot_size,
|
|
free,
|
|
used,
|
|
}
|
|
}
|
|
|
|
fn contains_address(&self, address: u32) -> bool {
|
|
let min = self.global_offset;
|
|
let max = min + self.slot_count * self.slot_size;
|
|
min <= address && address < max
|
|
}
|
|
|
|
fn try_alloc(&mut self) -> Option<u32> {
|
|
// Mark the first free index as used
|
|
let bucket_index = self.free.pop()?;
|
|
self.used.push(bucket_index);
|
|
|
|
// Convert the bucket index into a global address
|
|
Some(self.global_offset + bucket_index * self.slot_size)
|
|
}
|
|
|
|
fn try_dealloc(&mut self, address: u32) -> Result<(), String> {
|
|
log::trace!("Dealloc address: {}", address);
|
|
if !self.contains_address(address) {
|
|
let msg = format!("Address ({}) is not within bucket range.", address);
|
|
return Err(msg);
|
|
}
|
|
|
|
let local_address = address - self.global_offset;
|
|
if local_address % self.slot_size != 0 {
|
|
return Err("Address is not aligned to bucket element size.".to_string());
|
|
}
|
|
|
|
let bucket_index = local_address / self.slot_size;
|
|
if !self.used.contains(&bucket_index) {
|
|
return Err("Address is not currently allocated.".to_string());
|
|
}
|
|
|
|
// All the potential errors are out of the way, time to actually deallocate
|
|
let position = self.used.iter().position(|x| *x == bucket_index).unwrap();
|
|
self.used.swap_remove(position);
|
|
self.free.push(bucket_index);
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
struct ShadingTableAllocator {
|
|
buckets: Vec<ShadingBucket>,
|
|
bucket_count: u32,
|
|
elements_per_bucket: u32,
|
|
total_elements: u32,
|
|
used_elements: u32,
|
|
}
|
|
|
|
impl ShadingTableAllocator {
|
|
fn new(bucket_count: u32, elements_per_bucket: u32) -> Self {
|
|
let total_elements = bucket_count * elements_per_bucket;
|
|
let used_elements = 0;
|
|
|
|
// Build the buckets. Ordered in ascending size
|
|
let mut buckets = Vec::with_capacity(bucket_count as usize);
|
|
for i in (0..bucket_count).rev() {
|
|
let global_offset = i * elements_per_bucket;
|
|
let slot_size = u32::pow(2, 9 - i);
|
|
let slot_count = elements_per_bucket / slot_size;
|
|
log::info!(
|
|
"Creating bucket: offset({}), slot_size({}), slot_count({})",
|
|
global_offset,
|
|
slot_size,
|
|
slot_count
|
|
);
|
|
buckets.push(ShadingBucket::new(global_offset, slot_count, slot_size));
|
|
}
|
|
|
|
Self {
|
|
buckets,
|
|
bucket_count,
|
|
elements_per_bucket,
|
|
total_elements,
|
|
used_elements,
|
|
}
|
|
}
|
|
|
|
fn try_alloc(&mut self, size: u32) -> Option<u32> {
|
|
for i in 0..self.bucket_count as usize {
|
|
let bucket = &mut self.buckets[i];
|
|
if bucket.slot_size < size {
|
|
continue;
|
|
}
|
|
|
|
let idx = bucket.try_alloc();
|
|
if idx.is_some() {
|
|
self.used_elements += bucket.slot_size;
|
|
log::info!(
|
|
"Allocated to shader table at {}. {}/{} ({}%)",
|
|
idx.unwrap(),
|
|
self.used_elements,
|
|
self.total_elements,
|
|
((self.used_elements as f32 / self.total_elements as f32) * 100.0).floor()
|
|
);
|
|
return idx;
|
|
}
|
|
}
|
|
|
|
None
|
|
}
|
|
|
|
fn try_dealloc(&mut self, address: u32) -> Result<(), String> {
|
|
// Buckets are reverse order of their global offset so we need to reverse our idx
|
|
let mut bucket_idx = address / self.elements_per_bucket;
|
|
bucket_idx = self.bucket_count - bucket_idx - 1;
|
|
let bucket = &mut self.buckets[bucket_idx as usize];
|
|
self.used_elements -= bucket.slot_size;
|
|
bucket.try_dealloc(address)
|
|
}
|
|
}
|