ThiefLightmapper/KeepersCompound.Lightmapper/PotentiallyVisibleSet.cs

311 lines
11 KiB
C#
Raw Normal View History

2025-01-04 20:22:36 +00:00
using System.Numerics;
using KeepersCompound.LGS.Database.Chunks;
namespace KeepersCompound.Lightmapper;
public class PotentiallyVisibleSet
{
private class Edge
{
2025-01-04 21:17:53 +00:00
public int Destination;
2025-01-04 20:22:36 +00:00
public Poly Poly;
}
private class Poly(Vector3[] vertices, Plane plane)
{
public Vector3[] Vertices = vertices;
public Plane Plane = plane;
public bool IsCoplanar(Poly other)
{
// TODO: should this be in mathutils?
const float e = MathUtils.Epsilon;
var m = Plane.D / other.Plane.D;
var n0 = Plane.Normal;
var n1 = other.Plane.Normal * m;
return Math.Abs(n0.X - n1.X) < e && Math.Abs(n0.Y - n1.Y) < e && Math.Abs(n0.Z - n1.Z) < e;
}
}
private readonly List<int>[] _portalGraph;
private readonly List<Edge> _edges;
private readonly Dictionary<int, HashSet<int>> _visibilitySet;
// TODO:
// - This is a conservative algorithm based on Matt's Ramblings Quake PVS video
// - Build portal graph (or just use WR directly)
// - A cell can always see it's self and any immediate neighbours
// - The third depth cell is also visible unless the portal to it is coplanar with the second cells portal (do I need to think about this?)
// - For all further cells:
// - Generate separating planes between the source cell portal and the previously passed (clipped) portal
// - Clip the target portal to the new cell using the separating planes
// - If anything is left of the clipped portal, we can see, otherwise we discard that cell
// - The full process is a recursive depth first search
public PotentiallyVisibleSet(WorldRep.Cell[] cells)
{
_edges = [];
_visibilitySet = new Dictionary<int, HashSet<int>>();
_portalGraph = new List<int>[cells.Length];
for (var i = 0; i < cells.Length; i++)
{
_portalGraph[i] = [];
var cell = cells[i];
// If a cell is "blocks vision" flagged, we can never see out of it
// We can see into it though, so we still want the edges coming in
if ((cell.Flags & 8) != 0)
{
continue;
}
// We have to cycle through *all* polys rather than just portals to calculate the correct poly vertex offsets
var indicesOffset = 0;
var portalStartIdx = cell.PolyCount - cell.PortalPolyCount;
for (var j = 0; j < cell.PolyCount; j++)
{
var poly = cell.Polys[j];
if (j < portalStartIdx)
{
indicesOffset += poly.VertexCount;
continue;
}
var other = poly.Destination;
// Checking if there's already an edge is super slow. It's much faster to just add a new edge, even with
// the duplicated poly
var vs = new Vector3[poly.VertexCount];
for (var vIdx = 0; vIdx < poly.VertexCount; vIdx++)
2025-01-04 20:22:36 +00:00
{
vs[vIdx] = cell.Vertices[cell.Indices[indicesOffset + vIdx]];
2025-01-04 20:22:36 +00:00
}
var edge = new Edge
{
2025-01-04 21:17:53 +00:00
Destination = other,
Poly = new Poly(vs, cell.Planes[poly.PlaneId]),
};
_edges.Add(edge);
_portalGraph[i].Add(_edges.Count - 1);
2025-01-04 20:22:36 +00:00
indicesOffset += poly.VertexCount;
}
}
}
public int[] GetVisible(int cellIdx)
{
if (_visibilitySet.TryGetValue(cellIdx, out var value))
{
return [..value];
}
var visibleCells = ComputeVisibility(cellIdx);
_visibilitySet.Add(cellIdx, visibleCells);
return [..visibleCells];
}
private HashSet<int> ComputeVisibility(int cellIdx)
{
if (cellIdx >= _portalGraph.Length)
{
return [];
}
// A cell can always see itself, so we'll add that now
var visible = new HashSet<int>();
visible.Add(cellIdx);
// Additionally a cell can always see it's direct neighbours (obviously)
foreach (var edgeIndex in _portalGraph[cellIdx])
{
var edge = _edges[edgeIndex];
2025-01-04 21:17:53 +00:00
var neighbourIdx = edge.Destination;
2025-01-04 20:22:36 +00:00
visible.Add(neighbourIdx);
// Neighbours of our direct neighbour are always visible, unless they're coplanar
foreach (var innerEdgeIndex in _portalGraph[neighbourIdx])
{
var innerEdge = _edges[innerEdgeIndex];
2025-01-04 21:17:53 +00:00
if (innerEdge.Destination == cellIdx || edge.Poly.IsCoplanar(innerEdge.Poly))
2025-01-04 20:22:36 +00:00
{
continue;
}
// Now we get to the recursive section
2025-01-04 21:17:53 +00:00
ComputeClippedVisibility(visible, edge.Poly, innerEdge.Poly, neighbourIdx, innerEdge.Destination, 0);
2025-01-04 20:22:36 +00:00
}
}
return visible;
}
// TODO: Name this better
// TODO: This *should* be poly's not edges
private void ComputeClippedVisibility(
HashSet<int> visible,
Poly sourcePoly,
Poly previousPoly,
int previousCellIdx,
int currentCellIdx,
int depth)
{
if (depth > 2048)
{
return;
}
visible.Add(currentCellIdx);
// Generate separating planes
var separators = new List<Plane>();
separators.AddRange(GetSeparatingPlanes(sourcePoly, previousPoly, false));
separators.AddRange(GetSeparatingPlanes(previousPoly, sourcePoly, true));
// Clip all new polys and recurse
foreach (var edgeIndex in _portalGraph[currentCellIdx])
{
var edge = _edges[edgeIndex];
2025-01-04 21:17:53 +00:00
if (edge.Destination == previousCellIdx || previousPoly.IsCoplanar(edge.Poly))
2025-01-04 20:22:36 +00:00
{
continue;
}
2025-01-04 20:22:36 +00:00
var poly = separators.Aggregate(edge.Poly, ClipPolygonByPlane);
if (poly.Vertices.Length == 0)
{
continue;
}
2025-01-04 21:17:53 +00:00
ComputeClippedVisibility(visible, sourcePoly, poly, currentCellIdx, edge.Destination, depth + 1);
2025-01-04 20:22:36 +00:00
}
}
private static List<Plane> GetSeparatingPlanes(Poly p0, Poly p1, bool flip)
{
var separators = new List<Plane>();
for (var i = 0; i < p0.Vertices.Length; i++)
{
// brute force all combinations
// there's probably some analytical way to choose the "correct" v2 but I couldn't find anything online
var v0 = p0.Vertices[i];
var v1 = p0.Vertices[(i + 1) % p0.Vertices.Length];
for (var j = 0; j < p1.Vertices.Length; j++)
{
var v2 = p1.Vertices[j];
var normal = Vector3.Normalize(Vector3.Cross(v1 - v0, v2 - v0));
var d = Vector3.Dot(v2, normal);
var plane = new Plane(normal, d);
// Depending on how the edges were built, the resulting plane might be facing the wrong way
if (MathUtils.DistanceFromPlane(p0.Plane, v2) < MathUtils.Epsilon)
{
plane.Normal = -plane.Normal;
plane.D = -plane.D;
}
// All points should be behind/on the plane
var count = 0;
for (var k = 0; k < p1.Vertices.Length; k++)
{
if (k == j || MathUtils.DistanceFromPlane(plane, p1.Vertices[k]) > MathUtils.Epsilon)
{
count++;
}
}
if (count != p1.Vertices.Length)
{
continue;
}
if (flip)
{
plane.Normal = -plane.Normal;
plane.D = -plane.D;
}
separators.Add(plane);
}
}
return separators;
}
private enum Side
{
Front,
On,
Back
}
// TODO: is this reference type poly going to fuck me?
// TODO: Should this and Poly be in MathUtils?
private static Poly ClipPolygonByPlane(Poly poly, Plane plane)
{
var vertexCount = poly.Vertices.Length;
// Firstly we want to tally up what side of the plane each point of the poly is on
// This is used both to early out if nothing/everything is clipped, and to aid the clipping
var distances = new float[vertexCount];
var sides = new Side[vertexCount];
var counts = new int[3];
for (var i = 0; i < vertexCount; i++)
{
var distance = MathUtils.DistanceFromPlane(plane, poly.Vertices[i]);
distances[i] = distance;
sides[i] = distance switch {
> MathUtils.Epsilon => Side.Back,
<-MathUtils.Epsilon => Side.Front,
2025-01-04 20:22:36 +00:00
_ => Side.On,
};
counts[(int)sides[i]]++;
}
// Everything is within the half-space, so we don't need to clip anything
if (counts[(int)Side.Back] == 0)
{
return new Poly(poly.Vertices, poly.Plane);
}
// Everything is outside the half-space, so we clip everything
if (counts[(int)Side.Back] == vertexCount)
{
return new Poly([], poly.Plane);
}
var vertices = new List<Vector3>();
for (var i = 0; i < vertexCount; i++)
{
var i1 = (i + 1) % vertexCount;
var v0 = poly.Vertices[i];
var v1 = poly.Vertices[i1];
var side = sides[i];
var nextSide = sides[i1];
// Vertices that are inside/on the half-space don't get clipped
if (sides[i] != Side.Back)
{
vertices.Add(v0);
}
// We only need to do any clipping if we've swapped from front-to-back or vice versa
// If either the current or next side is On then that's where we would have clipped to
// anyway so we also don't need to do anything
if (side == Side.On || nextSide == Side.On || side != nextSide)
{
continue;
}
// This is how far along the vector v0 -> v1 the front/back crossover occurs
var frac = distances[i] / (distances[i] - distances[i1]);
var splitVertex = v0 + frac * (v1 - v0);
vertices.Add(splitVertex);
}
return new Poly([..vertices], poly.Plane);
}
}