ThiefLightmapper/KeepersCompound.Lightmapper/PotentiallyVisibleSet.cs

412 lines
14 KiB
C#

using System.Collections;
using System.Numerics;
using KeepersCompound.LGS.Database.Chunks;
using Serilog;
namespace KeepersCompound.Lightmapper;
public class PotentiallyVisibleSet
{
private readonly struct Node(List<int> edgeIndices)
{
public readonly List<int> EdgeIndices = edgeIndices;
}
private readonly struct Edge(int mightSeeLength, int destination, Poly poly)
{
public readonly BitArray MightSee = new(mightSeeLength);
public readonly int Destination = destination;
public readonly Poly Poly = poly;
public override string ToString()
{
return $"<Destination: {Destination}, Poly: {Poly}";
}
}
private struct Poly
{
public readonly Vector3 Center;
public readonly float Radius;
public List<Vector3> Vertices;
public readonly Plane Plane;
public Poly(List<Vector3> vertices, Plane plane)
{
Vertices = vertices;
Plane = plane;
// Center is just taken to be the "average" of the vertices
Center = Vector3.Zero;
foreach (var v in vertices)
{
Center += v;
}
Center /= vertices.Count;
// Radius is the max vertex distance from the center
// We're actually calculating radius squared to begin with because it's faster :)
Radius = 0;
foreach (var v in vertices)
{
Radius = float.Max(Radius, (v - Center).LengthSquared());
}
Radius = MathF.Sqrt(Radius);
}
public Poly(Poly other)
{
Vertices = [..other.Vertices];
Plane = other.Plane;
}
public bool IsCoplanar(Poly other)
{
return MathUtils.IsCoplanar(Plane, other.Plane);
}
public override string ToString()
{
return $"<Plane: {Plane}, Vertices: [{string.Join(", ", Vertices)}]";
}
}
private readonly Node[] _graph;
private readonly List<Edge> _edges;
private const float Epsilon = MathUtils.Epsilon;
// TODO:
// - This is a conservative algorithm based on Matt's Ramblings Quake PVS video
// - Build portal graph (or just use WR directly)
// - A cell can always see it's self and any immediate neighbours
// - The third depth cell is also visible unless the portal to it is coplanar with the second cells portal (do I need to think about this?)
// - For all further cells:
// - Generate separating planes between the source cell portal and the previously passed (clipped) portal
// - Clip the target portal to the new cell using the separating planes
// - If anything is left of the clipped portal, we can see, otherwise we discard that cell
// - The full process is a recursive depth first search
public PotentiallyVisibleSet(WorldRep.Cell[] cells)
{
_graph = new Node[cells.Length];
var portalCount = 0;
for (var i = 0; i < cells.Length; i++)
{
portalCount += cells[i].PortalPolyCount;
}
_edges = new List<Edge>(portalCount);
Log.Information("Mission contains {PortalCount} portals.", portalCount);
for (var i = 0; i < cells.Length; i++)
{
var cell = cells[i];
var edgeIndices = new List<int>(cell.PortalPolyCount);
// If a cell is "blocks vision" flagged, we can never see out of it
// We can see into it though, so we still want the edges coming in
if ((cell.Flags & 8) != 0)
{
_graph[i] = new Node(edgeIndices);
continue;
}
// We have to cycle through *all* polys rather than just portals to calculate the correct poly vertex offsets
var indicesOffset = 0;
var portalStartIdx = cell.PolyCount - cell.PortalPolyCount;
for (var j = 0; j < cell.PolyCount; j++)
{
var poly = cell.Polys[j];
if (j < portalStartIdx)
{
indicesOffset += poly.VertexCount;
continue;
}
// Checking if there's already an edge is super slow. It's much faster to just add a new edge, even with
// the duplicated poly
var vs = new List<Vector3>(poly.VertexCount);
for (var vIdx = 0; vIdx < poly.VertexCount; vIdx++)
{
vs.Add(cell.Vertices[cell.Indices[indicesOffset + vIdx]]);
}
var edge = new Edge(cells.Length, poly.Destination, new Poly(vs, cell.Planes[poly.PlaneId]));
edgeIndices.Add(_edges.Count);
_edges.Add(edge);
indicesOffset += poly.VertexCount;
}
_graph[i] = new Node(edgeIndices);
}
// Parallel.ForEach(_edges, ComputeEdgeMightSee);
}
public HashSet<int> ComputeVisibilityFast(int cellIdx)
{
if (cellIdx >= _graph.Length)
{
return [];
}
var visibleCells = new HashSet<int> { cellIdx };
foreach (var edgeIdx in _graph[cellIdx].EdgeIndices)
{
var edge = _edges[edgeIdx];
for (var i = 0; i < edge.MightSee.Length; i++)
{
if (edge.MightSee[i])
{
visibleCells.Add(i);
}
}
}
return visibleCells;
}
public HashSet<int> ComputeVisibilityExact(Vector3 pos, int cellIdx, float maxRange)
{
if (cellIdx >= _graph.Length)
{
return [];
}
var visibleCells = new HashSet<int> { cellIdx };
var visited = new Stack<int>();
visited.Push(cellIdx);
foreach (var edgeIdx in _graph[cellIdx].EdgeIndices)
{
var edge = _edges[edgeIdx];
ComputeVisibilityExactRecursive(pos, maxRange, visibleCells, visited, edge.Destination, edge.Poly);
}
return visibleCells;
}
private void ComputeVisibilityExactRecursive(
Vector3 lightPos,
float maxRange,
HashSet<int> visibleCells,
Stack<int> visited,
int currentCellIdx,
Poly passPoly)
{
visited.Push(currentCellIdx);
visibleCells.Add(currentCellIdx);
var clipPlanes = new List<Plane>(passPoly.Vertices.Count);
clipPlanes.Clear();
for (var i = 0; i < passPoly.Vertices.Count; i++)
{
var v0 = passPoly.Vertices[i];
var v1 = passPoly.Vertices[(i + 1) % passPoly.Vertices.Count];
var normal = Vector3.Cross(v0 - lightPos, v1 - lightPos);
if (normal.LengthSquared() < Epsilon)
{
continue;
}
normal = Vector3.Normalize(normal);
var d = -Vector3.Dot(v1, normal);
var plane = new Plane(normal, d);
clipPlanes.Add(plane);
}
foreach (var targetEdgeIdx in _graph[currentCellIdx].EdgeIndices)
{
// This only checks is there is a point on the plane in range.
// Could probably use poly center + radius to get an even better early out.
var targetEdge = _edges[targetEdgeIdx];
if (visited.Contains(targetEdge.Destination) ||
Math.Abs(MathUtils.DistanceFromNormalizedPlane(targetEdge.Poly.Plane, lightPos)) > maxRange)
{
continue;
}
var poly = new Poly(targetEdge.Poly);
foreach (var clipPlane in clipPlanes)
{
ClipPolygonByPlane(ref poly, clipPlane);
}
if (poly.Vertices.Count == 0)
{
continue;
}
ComputeVisibilityExactRecursive(lightPos, maxRange, visibleCells, visited, targetEdge.Destination, poly);
}
visited.Pop();
}
public void ComputeCellMightSee(int cellIdx)
{
if (cellIdx >= _graph.Length)
{
return;
}
foreach (var edgeIdx in _graph[cellIdx].EdgeIndices)
{
ComputeEdgeMightSee(_edges[edgeIdx]);
}
}
private void ComputeEdgeMightSee(Edge source)
{
var sourcePlane = source.Poly.Plane;
var unexploredCells = new Stack<int>();
unexploredCells.Push(source.Destination);
while (unexploredCells.Count > 0)
{
var cellIdx = unexploredCells.Pop();
if (source.MightSee[cellIdx])
{
continue; // target is already explored
}
source.MightSee[cellIdx] = true;
// Target must be partly behind source, source must be partly in front of target, and source and target cannot face each other
foreach (var targetEdgeIdx in _graph[cellIdx].EdgeIndices)
{
var target = _edges[targetEdgeIdx];
var targetPlane = target.Poly.Plane;
// If we're already visited the target, target is fully behind source, or source is fully behind target
// then we can quickly discard this portal
if (source.MightSee[target.Destination] ||
MathUtils.DistanceFromNormalizedPlane(sourcePlane, target.Poly.Center) > target.Poly.Radius ||
MathUtils.DistanceFromNormalizedPlane(targetPlane, source.Poly.Center) < -source.Poly.Radius)
{
continue;
}
var validTarget = false;
foreach (var v in target.Poly.Vertices)
{
if (MathUtils.DistanceFromNormalizedPlane(sourcePlane, v) < -MathUtils.Epsilon)
{
validTarget = true;
break;
}
}
if (!validTarget)
{
continue;
}
validTarget = false;
foreach (var v in source.Poly.Vertices)
{
if (MathUtils.DistanceFromNormalizedPlane(targetPlane, v) > MathUtils.Epsilon)
{
validTarget = true;
break;
}
}
if (!validTarget)
{
continue;
}
if (Vector3.Dot(sourcePlane.Normal, targetPlane.Normal) > MathUtils.Epsilon - 1)
{
unexploredCells.Push(target.Destination);
}
}
}
}
private enum Side
{
Front,
On,
Back
}
// TODO: is this reference type poly going to fuck me?
// TODO: Should this and Poly be in MathUtils?
private static void ClipPolygonByPlane(ref Poly poly, Plane plane)
{
var vertexCount = poly.Vertices.Count;
if (vertexCount == 0)
{
return;
}
// Firstly we want to tally up what side of the plane each point of the poly is on
// This is used both to early out if nothing/everything is clipped, and to aid the clipping
var distances = new float[vertexCount];
var sides = new Side[vertexCount];
var counts = new[] {0, 0, 0};
for (var i = 0; i < vertexCount; i++)
{
var distance = MathUtils.DistanceFromPlane(plane, poly.Vertices[i]);
distances[i] = distance;
sides[i] = distance switch
{
> Epsilon => Side.Front,
< -Epsilon => Side.Back,
_ => Side.On,
};
counts[(int)sides[i]]++;
}
// Everything is within the half-space, so we don't need to clip anything
if (counts[(int)Side.Back] == 0 && counts[(int)Side.On] != vertexCount)
{
return;
}
// Everything is outside the half-space, so we clip everything
if (counts[(int)Side.Front] == 0)
{
poly.Vertices.Clear();
return;
}
var vertices = new List<Vector3>();
for (var i = 0; i < vertexCount; i++)
{
var i1 = (i + 1) % vertexCount;
var v0 = poly.Vertices[i];
var v1 = poly.Vertices[i1];
var side = sides[i];
var nextSide = sides[i1];
// Vertices that are inside/on the half-space don't get clipped
if (sides[i] != Side.Back)
{
vertices.Add(v0);
}
// We only need to do any clipping if we've swapped from front-to-back or vice versa
// If either the current or next side is On then that's where we would have clipped to
// anyway so we also don't need to do anything
if (side == Side.On || nextSide == Side.On || side == nextSide)
{
continue;
}
// This is how far along the vector v0 -> v1 the front/back crossover occurs
var frac = distances[i] / (distances[i] - distances[i1]);
var splitVertex = v0 + frac * (v1 - v0);
vertices.Add(splitVertex);
}
poly.Vertices = vertices;
}
}