ThiefLightmapper/KeepersCompound.Lightmapper/PotentiallyVisibleSet.cs

483 lines
16 KiB
C#

using System.Numerics;
using KeepersCompound.LGS.Database.Chunks;
namespace KeepersCompound.Lightmapper;
public class PotentiallyVisibleSet
{
private struct Node(List<int> edgeIndices)
{
public bool VisibilityComputed = false;
public HashSet<int> VisibleNodes = [];
public readonly List<int> EdgeIndices = edgeIndices;
}
private readonly struct Edge(int mightSeeLength, int destination, Poly poly)
{
public readonly bool[] MightSee = new bool[mightSeeLength];
public readonly int Destination = destination;
public readonly Poly Poly = poly;
public override string ToString()
{
return $"<Destination: {Destination}, Poly: {Poly}";
}
}
private struct Poly
{
public List<Vector3> Vertices;
public readonly Plane Plane;
public Poly(List<Vector3> vertices, Plane plane)
{
Vertices = vertices;
Plane = plane;
}
public Poly(Poly other)
{
Vertices = [..other.Vertices];
Plane = other.Plane;
}
public bool IsCoplanar(Poly other)
{
return MathUtils.IsCoplanar(Plane, other.Plane);
}
public override string ToString()
{
return $"<Plane: {Plane}, Vertices: [{string.Join(", ", Vertices)}]";
}
}
private readonly Node[] _graph;
private readonly List<Edge> _edges;
private const float Epsilon = 0.1f;
// This is yucky and means we're not thread safe
private readonly List<float> _clipDistances = new(32);
private readonly List<Side> _clipSides = new(32);
private readonly int[] _clipCounts = [0, 0, 0];
// TODO:
// - This is a conservative algorithm based on Matt's Ramblings Quake PVS video
// - Build portal graph (or just use WR directly)
// - A cell can always see it's self and any immediate neighbours
// - The third depth cell is also visible unless the portal to it is coplanar with the second cells portal (do I need to think about this?)
// - For all further cells:
// - Generate separating planes between the source cell portal and the previously passed (clipped) portal
// - Clip the target portal to the new cell using the separating planes
// - If anything is left of the clipped portal, we can see, otherwise we discard that cell
// - The full process is a recursive depth first search
public PotentiallyVisibleSet(WorldRep.Cell[] cells)
{
_graph = new Node[cells.Length];
_edges = [];
var portalCount = 0;
foreach (var cell in cells)
{
portalCount += cell.PortalPolyCount;
}
for (var i = 0; i < cells.Length; i++)
{
var cell = cells[i];
var edgeIndices = new List<int>(cell.PortalPolyCount);
// If a cell is "blocks vision" flagged, we can never see out of it
// We can see into it though, so we still want the edges coming in
if ((cell.Flags & 8) != 0)
{
_graph[i] = new Node(edgeIndices);
continue;
}
// We have to cycle through *all* polys rather than just portals to calculate the correct poly vertex offsets
var indicesOffset = 0;
var portalStartIdx = cell.PolyCount - cell.PortalPolyCount;
for (var j = 0; j < cell.PolyCount; j++)
{
var poly = cell.Polys[j];
if (j < portalStartIdx)
{
indicesOffset += poly.VertexCount;
continue;
}
// Checking if there's already an edge is super slow. It's much faster to just add a new edge, even with
// the duplicated poly
var vs = new List<Vector3>(poly.VertexCount);
for (var vIdx = 0; vIdx < poly.VertexCount; vIdx++)
{
vs.Add(cell.Vertices[cell.Indices[indicesOffset + vIdx]]);
}
var edge = new Edge(portalCount, poly.Destination, new Poly(vs, cell.Planes[poly.PlaneId]));
edgeIndices.Add(_edges.Count);
_edges.Add(edge);
indicesOffset += poly.VertexCount;
}
_graph[i] = new Node(edgeIndices);
}
Parallel.ForEach(_edges, ComputeEdgeMightSee);
}
public int[] GetVisible(int cellIdx)
{
// TODO: Handle out of range indices
var node = _graph[cellIdx];
if (node.VisibilityComputed)
{
return [..node.VisibleNodes];
}
var visibleCells = ComputeVisibility(cellIdx);
node.VisibilityComputed = true;
node.VisibleNodes = visibleCells;
_graph[cellIdx] = node;
return [..visibleCells];
}
private void ComputeEdgeMightSee(Edge source)
{
var sourcePlane = source.Poly.Plane;
var unexploredCells = new Stack<int>();
unexploredCells.Push(source.Destination);
while (unexploredCells.Count > 0)
{
var cellIdx = unexploredCells.Pop();
if (source.MightSee[cellIdx])
{
continue; // target is already explored
}
source.MightSee[cellIdx] = true;
// Target must be partly behind source, source must be partly in front of target, and source and target cannot face each other
foreach (var targetEdgeIdx in _graph[cellIdx].EdgeIndices)
{
var target = _edges[targetEdgeIdx];
var targetPlane = target.Poly.Plane;
if (source.MightSee[target.Destination])
{
continue; // target is already explored
}
var validTarget = false;
foreach (var v in target.Poly.Vertices)
{
if (MathUtils.DistanceFromNormalizedPlane(sourcePlane, v) < -MathUtils.Epsilon)
{
validTarget = true;
break;
}
}
if (!validTarget)
{
continue;
}
validTarget = false;
foreach (var v in source.Poly.Vertices)
{
if (MathUtils.DistanceFromNormalizedPlane(targetPlane, v) > MathUtils.Epsilon)
{
validTarget = true;
break;
}
}
if (!validTarget)
{
continue;
}
if (Vector3.Dot(sourcePlane.Normal, targetPlane.Normal) > MathUtils.Epsilon - 1)
{
unexploredCells.Push(target.Destination);
}
}
}
}
private HashSet<int> ComputeVisibility(int cellIdx)
{
if (cellIdx >= _graph.Length)
{
return [];
}
// A cell can always see itself, so we'll add that now
var visible = new HashSet<int>();
visible.Add(cellIdx);
foreach (var edgeIdx in _graph[cellIdx].EdgeIndices)
{
var edge = _edges[edgeIdx];
for (var i = 0; i < edge.MightSee.Length; i++)
{
if (edge.MightSee[i])
{
visible.Add(i);
}
}
}
return visible;
// if (cellIdx >= _portalGraph.Length)
// {
// return [];
// }
// Additionally a cell can always see it's direct neighbours (obviously)
// foreach (var edgeIndex in _portalGraph[cellIdx])
// {
// var edge = _edges[edgeIndex];
// var neighbourIdx = edge.Destination;
// visible.Add(neighbourIdx);
//
// // Neighbours of our direct neighbour are always visible, unless they're coplanar
// foreach (var innerEdgeIndex in _portalGraph[neighbourIdx])
// {
// var innerEdge = _edges[innerEdgeIndex];
// if (innerEdge.Destination == cellIdx || edge.Poly.IsCoplanar(innerEdge.Poly))
// {
// continue;
// }
//
// ExplorePortalRecursive(visible, edge.Poly, new Poly(innerEdge.Poly), neighbourIdx, innerEdge.Destination, 0);
// }
// }
// return visible;
}
// private void ExplorePortalRecursive(
// HashSet<int> visible,
// Poly sourcePoly,
// Poly previousPoly,
// int previousCellIdx,
// int currentCellIdx,
// int depth)
// {
// // TODO: Might need to lose this
// if (depth > 1024)
// {
// return;
// }
//
// visible.Add(currentCellIdx);
//
// // Only one edge out of the cell means we'd be going back on ourselves
// if (_portalGraph[currentCellIdx].Count <= 1)
// {
// return;
// }
//
// // TODO: If all neighbours are already in `visible` skip exploring?
//
// var separators = new List<Plane>();
// GetSeparatingPlanes(separators, sourcePoly, previousPoly, false);
// GetSeparatingPlanes(separators, previousPoly, sourcePoly, true);
//
// // The case for this occuring is... interesting ( idk )
// if (separators.Count == 0)
// {
// return;
// }
//
// // Clip all new polys and recurse
// foreach (var edgeIndex in _portalGraph[currentCellIdx])
// {
// var edge = _edges[edgeIndex];
// if (edge.Destination == previousCellIdx || previousPoly.IsCoplanar(edge.Poly) || sourcePoly.IsCoplanar(edge.Poly))
// {
// continue;
// }
//
// var poly = new Poly(edge.Poly);
// foreach (var separator in separators)
// {
// ClipPolygonByPlane(ref poly, separator);
// }
//
// if (poly.Vertices.Count == 0)
// {
// continue;
// }
//
// ExplorePortalRecursive(visible, sourcePoly, poly, currentCellIdx, edge.Destination, depth + 1);
// }
// }
// TODO: We're getting multiple separating planes that are the same, let's not somehow?
private static void GetSeparatingPlanes(List<Plane> separators, Poly p0, Poly p1, bool flip)
{
for (var i = 0; i < p0.Vertices.Count; i++)
{
// brute force all combinations
// there's probably some analytical way to choose the "correct" v2 but I couldn't find anything online
var v0 = p0.Vertices[i];
var v1 = p0.Vertices[(i + 1) % p0.Vertices.Count];
for (var j = 0; j < p1.Vertices.Count; j++)
{
var v2 = p1.Vertices[j];
var normal = Vector3.Cross(v1 - v0, v2 - v0);
if (normal.LengthSquared() < Epsilon)
{
// colinear (or near colinear) points will produce an invalid plane
continue;
}
normal = Vector3.Normalize(normal);
var d = -Vector3.Dot(v2, normal);
// Depending on how the edges were built, the resulting plane might be facing the wrong way
var distanceToSource = MathUtils.DistanceFromPlane(p0.Plane, v2);
if (distanceToSource > Epsilon)
{
normal = -normal;
d = -d;
}
var plane = new Plane(normal, d);
if (MathUtils.IsCoplanar(plane, flip ? p0.Plane : p1.Plane))
{
continue;
}
// All points should be in front of the plane (except for the point used to create it)
var invalid = false;
var count = 0;
for (var k = 0; k < p1.Vertices.Count; k++)
{
if (k == j)
{
continue;
}
var dist = MathUtils.DistanceFromPlane(plane, p1.Vertices[k]);
if (dist > Epsilon)
{
count++;
}
else if (dist < -Epsilon)
{
invalid = true;
break;
}
}
if (invalid || count == 0)
{
continue;
}
if (flip)
{
plane.Normal = -normal;
plane.D = -d;
}
separators.Add(plane);
}
}
}
private enum Side
{
Front,
On,
Back
}
// TODO: is this reference type poly going to fuck me?
// TODO: Should this and Poly be in MathUtils?
private void ClipPolygonByPlane(ref Poly poly, Plane plane)
{
var vertexCount = poly.Vertices.Count;
if (vertexCount == 0)
{
return;
}
// Firstly we want to tally up what side of the plane each point of the poly is on
// This is used both to early out if nothing/everything is clipped, and to aid the clipping
// var distances = new float[vertexCount];
// var sides = new Side[vertexCount];
// var counts = new int[3];
_clipDistances.Clear();
_clipSides.Clear();
_clipCounts[0] = 0;
_clipCounts[1] = 0;
_clipCounts[2] = 0;
for (var i = 0; i < vertexCount; i++)
{
var distance = MathUtils.DistanceFromPlane(plane, poly.Vertices[i]);
_clipDistances.Add(distance);
_clipSides.Add(distance switch {
> Epsilon => Side.Front,
<-Epsilon => Side.Back,
_ => Side.On,
});
_clipCounts[(int)_clipSides[i]]++;
}
// Everything is within the half-space, so we don't need to clip anything
if (_clipCounts[(int)Side.Back] == 0 && _clipCounts[(int)Side.On] != vertexCount)
{
return;
}
// Everything is outside the half-space, so we clip everything
if (_clipCounts[(int)Side.Front] == 0)
{
poly.Vertices.Clear();
return;
}
var vertices = new List<Vector3>();
for (var i = 0; i < vertexCount; i++)
{
var i1 = (i + 1) % vertexCount;
var v0 = poly.Vertices[i];
var v1 = poly.Vertices[i1];
var side = _clipSides[i];
var nextSide = _clipSides[i1];
// Vertices that are inside/on the half-space don't get clipped
if (_clipSides[i] != Side.Back)
{
vertices.Add(v0);
}
// We only need to do any clipping if we've swapped from front-to-back or vice versa
// If either the current or next side is On then that's where we would have clipped to
// anyway so we also don't need to do anything
if (side == Side.On || nextSide == Side.On || side == nextSide)
{
continue;
}
// This is how far along the vector v0 -> v1 the front/back crossover occurs
var frac = _clipDistances[i] / (_clipDistances[i] - _clipDistances[i1]);
var splitVertex = v0 + frac * (v1 - v0);
vertices.Add(splitVertex);
}
poly.Vertices = vertices;
}
}